MCMC-Based Image Reconstruction with Uncertainty Quantification

نویسنده

  • Johnathan M. Bardsley
چکیده

The connection between Bayesian statistics and the technique of regularization for inverse problems has been given significant attention in recent years. For example, Bayes’ Law is frequently used as motivation for variational regularization methods of Tikhonov type. In this setting, the regularization function corresponds to the negative-log of the prior probability density; the fit-to-data function corresponds to the negative-log of the likelihood; and the regularized solution corresponds to the maximizer of the posterior density function, known as the maximum a posteriori (MAP) estimator of the unknown, which in our case is an image. Much of the work in this direction has focused on the development of techniques for efficient computation of MAP estimators (or regularized solutions). Less explored in the inverse problems community, and of interest to us in this paper, is the problem of sampling from the posterior density. To do this, we use a Markov chain Monte Carlo (MCMC) method which has previously appeared in the Bayesian statistics literature, is straightforward to implement, and provides a means of both estimation and uncertainty quantification for the unknown. Additionally, we show how to use the preconditioned conjugate gradient method to compute image samples in cases where direct methods are not feasible. And finally, the MCMC method provides samples of the noise and prior precision (inverse-variance) parameters, which makes regularization parameter selection unnecessary. We focus on linear models with independent and identically distributed Gaussian noise and define the prior using a Gaussian Markov random field. For our numerical experiments, we consider test-cases from both image deconvolution and computed tomography, and our results show that the approach is effective and surprisingly computationally efficient, even in large-scale cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Tomographic Reconstruction Using Riemannian MCMC

This paper describes the use of Monte Carlo sampling for tomographic image reconstruction. We describe an efficient sampling strategy, based on the Riemannian Manifold Markov Chain Monte Carlo algorithm, that exploits the peculiar structure of tomographic data, enabling efficient sampling of the high-dimensional probability densities that arise in tomographic imaging. Experiments with positron ...

متن کامل

Uncertainty quantification for radio interferometric imaging: II. MAP estimation

Uncertainty quantification is a critical missing component in radio interferometric imaging that will only become increasingly important as the big-data era of radio interferometry emerges. Statistical sampling approaches to perform Bayesian inference, like Markov Chain Monte Carlo (MCMC) sampling, can in principle recover the full posterior distribution of the image, from which uncertainties c...

متن کامل

An MCMC Method for Uncertainty Quantification in Nonnegativity Constrained Inverse Problems

The development of computational algorithms for solving inverse problems is, and has been, a primary focus of the inverse problems community. Less studied, but of increased interest, is uncertainty quantification for solutions of inverse problems obtained using computational methods. In this paper, we present a method of uncertainty quantification for linear inverse problems with nonnegativity ...

متن کامل

Efficient Mcmc-based Image Deblurringwith Neumann Boundary Conditions

The problem of uncertainty quantification (UQ) for inverse problems has become of significant recent interest. However, UQ requires more than the classical methods for computing solutions of inverse problems. In this paper, we take a Bayesian approach for the solution of ill-posed deconvolution problems with a symmetric convolution kernel and Neumann boundary conditions. The prior is modeled as...

متن کامل

Uncertainty quantification for radio interferometric imaging: I. proximal MCMC methods

Uncertainty quantification is a critical missing component in radio interferometric imaging that will only become increasingly important as the big-data era of radio interferometry emerges. Since radio interferometric imaging requires solving a high-dimensional, ill-posed inverse problem, uncertainty quantification is difficult but also critical to the accurate scientific interpretation of radi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012